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Modulating the evolutionary trajectory of tolerance
using antibiotics with different metabolic
dependencies
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Antibiotic tolerance, or the ability of bacteria to survive antibiotic treatment in the absence of

genetic resistance, has been linked to chronic and recurrent infections. Tolerant cells are

often characterized by a low metabolic state, against which most clinically used antibiotics

are ineffective. Here, we show that tolerance readily evolves against antibiotics that are

strongly dependent on bacterial metabolism, but does not arise against antibiotics whose

efficacy is only minimally affected by metabolic state. We identify a mechanism of tolerance

evolution in E. coli involving deletion of the sodium-proton antiporter gene nhaA, which results

in downregulated metabolism and upregulated stress responses. Additionally, we find that

cycling of antibiotics with different metabolic dependencies interrupts evolution of tolerance

in vitro, increasing the lifetime of treatment efficacy. Our work highlights the potential for

limiting the occurrence and extent of tolerance by accounting for antibiotic dependencies on

bacterial metabolism.
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Antibiotic tolerance evolves in response to repeated anti-
biotic exposure at an alarming pace, with increases in
bacterial survival of several logs observed within 3-10 days

of antibiotic treatment through heritable, tolerance-encoding
mutations1–6. These in vitro findings have been supported by
several recent studies documenting the evolution of bacterial
tolerance in the clinic, through longitudinal phenotyping and
whole-genome sequencing7–11. Strategies to delay or prevent
tolerance evolution and extend the lifetime of antibiotic efficacy
are urgently needed7,10,12.

To date, studies of tolerance evolution have primarily been con-
ducted with antibiotics that have a strong dependence on bacterial
metabolism1,3,4,13–15, which fail to eradicate bacteria in infection-
relevant contexts where metabolism can be downregulated15–23.
Recently, we developed a metric for quantifying antibiotic metabo-
lism dependence15 and found that structurally diverse antibiotics are
strongly (SDM) or weakly dependent on metabolism (WDM), where
WDM antibiotics retain efficacy even against dormant cells. Even
though tolerance and bacterial metabolism are inherently linked16,24,
the effect of antibiotic metabolism dependence on tolerance evolution
has not been investigated, and it is unknown whether tolerance
evolves similarly to all antibiotics, whether SDM or WDM. However,
as metabolic dormancy protects against antibiotic lethality16,25,26 and
in vitro antibiotic evolution experiments have yielded tolerance-
inducing mutations in metabolic genes4,27,28, there is a strong like-
lihood that antibiotic metabolism dependence will be a key deter-
minant of the rate at which tolerance evolves.

Here, we sought to determine how the bacterial evolutionary
trajectory of tolerance differs during treatment with antibiotics
that have different metabolic dependencies. We show that the
evolvability of tolerance is largely determined by antibiotic
metabolism dependence, with SDM antibiotics more readily
evolving tolerance than WDM antibiotics. We discover that
deletion of the sodium/proton antiporter nhaA during repeated
SDM treatment confers tolerance through metabolic suppression.
Additionally, we demonstrate that cycling of antibiotics with
different metabolic dependencies delays the evolution of tolerance
while reducing the use of toxic antibiotics. These results under-
score the importance of considering antibiotic metabolism
dependence when designing treatments that are more robust
against bacterial counterstrategies.

Results
Tolerance evolves during repeated SDM but not WDM anti-
biotic exposure. To compare evolution of tolerance during SDM
versus WDM antibiotic treatment, we conducted parallel anti-
biotic evolutions of E. coli BW25113 against two SDM antibiotics
(ampicillin and ciprofloxacin) and three WDM antibiotics (gen-
tamicin, halicin, and mitomycin C)15,29 (Fig. 1a, Supplementary
Fig. 1, Supplementary Table 2). We hypothesized that over
repeated SDM treatment, tolerant mutants would be continually
selected for, increasing their occurrence in the population.
Additionally, we hypothesized that metabolic dormancy would
not offer a survival advantage during WDM treatment15, and thus
tolerant cells would not be selected for and their proportion in the
population would not increase. To test these hypotheses experi-
mentally, we diluted overnight cultures 1:100 in fresh LB media
and subjected cells to a 6-hour antibiotic treatment in biological
triplicate. Cells were then washed twice in phosphate-buffered
saline, re-suspended in LB, and grown overnight. This process
was repeated every day over the course of the experiments.

Consistent with previous studies, ampicillin-treated cultures
quickly evolved tolerance, as by day 6 we observed a 3-log
increase in survival compared to the ancestral strain treated with
the same concentration of antibiotic (Fig. 1b, Supplementary

Fig. 3a)1. Cultures evolved on ciprofloxacin also developed
tolerance (Fig. 1b), though several days later than ampicillin
(Supplementary Fig. 3b), possibly since ciprofloxacin is less
dependent on metabolism than ampicillin15. The increased
antibiotic survival of these evolved cultures was population-wide,
indicating tolerance, rather than persistence which is character-
ized by a biphasic kill curve (Supplementary Fig. 2b). The
respective MICs remained consistent for each of these experi-
ments, ruling out the possibility of resistance accounting for the
increase in survival (Fig. 1c), and there was no evidence of
heteroresistance, where a portion of the population has decreased
antibiotic susceptibility30–32 (Supplementary Fig. 2c, d). In
contrast, cultures evolved on WDM antibiotics did not develop
tolerance up through day 30, where there was still no increase in
survival compared to the ancestral strain (Fig. 1b).

Due to differences in killing efficacy of these SDM and WDM
antibiotics against the ancestral strain, we verified that these
contrasting evolutionary outcomes were not due to a population
bottlenecking effect. As mitomycin C and gentamicin kill an
additional log of bacteria compared to ampicillin and ciproflox-
acin (Fig. 1b), it is possible that differences in tolerance evolution
could be due to the limited mutational diversity imposed by
smaller bottleneck events27,33. To assess the effect of bottleneck
size, we conducted a modified version of the ampicillin evolution
where only 10% of the surviving fraction after antibiotic
treatment was carried over to the growth phase, in order to
mimic the mitomycin C and gentamicin bottleneck size. Even
with this smaller population bottleneck, cells still became tolerant
to ampicillin by day 7 (Supplementary Fig. 3d). Together, these
results demonstrate that the evolvability of tolerance can be
largely accounted for by the metabolic dependence of the applied
antibiotic.

SDM-tolerant cells are not tolerant against WDM antibiotics.
In contrast to mutations in classical resistance genes that often
confer protection against a single drug class, in many cases tol-
erant cells have increased survival against multiple antibiotic
classes1,2,16. We took SDM-evolved tolerant cultures and tested
whether they were cross-tolerant to both SDM and WDM anti-
biotics. We found that ampicillin-evolved cultures were cross-
tolerant to ciprofloxacin and vice versa, showing that the evolved
tolerance can be non-specific to the mechanism of action of the
original SDM antibiotic (Fig. 1d). However, the SDM-evolved
cultures were not cross-tolerant to WDM antibiotics, consistent
with the ability of WDM antibiotics to kill SDM-tolerant cells
(Fig. 1d)15.

Identification of a tolerance-conferring deletion through
whole-genome sequencing. Previous studies have found that cells
can evolve tolerance by increasing their lag time1,3,9,11. To
examine whether our SDM-treated cells had evolved tolerance
through a similar mechanism, we determined colony appearance
time through time-lapsed scanning of agar plates and found that
there was no change in lag time (Supplementary Fig. 4a). We also
carried out growth curves and did not observe any changes in
growth rate (Supplementary Fig. 4b). However, we noted that
SDM-evolved cells reached a lower stationary-phase density after
overnight growth compared to the ancestral strain (Supplemen-
tary Fig. 4c–e). Interestingly, the decrease in stationary-phase
density in SDM-evolved cells emerged at a similar time as the
evolved tolerance (Supplementary Fig. 3a, b), indicating that these
phenotypes could be linked. To further explore the relationship
between the reduced density and tolerance, we streaked our
SDM-evolved cultures and selected clonal isolates. We found that
there was some heterogeneity in the evolved cultures, and that
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clones that did not have increased survival under SDM antibiotic
treatment also did not grow to a lower maximal density, further
associating this SDM-evolved tolerance with reduced stationary-
phase density (Supplementary Fig. 4f).

To identify the mechanism of the evolved tolerance, we
conducted whole-genome sequencing on tolerant cultures
isolated from day 8 of the ampicillin evolution (amp D8) and
found ~2.6–2.7 kb deletions, which included the entirety of nhaA,
the main sodium-proton antiporter in E. coli, and its regulator
nhaR (Fig. 2a, Supplementary Table 3, Supplementary Note 1).
This deletion also occurred in ciprofloxacin-evolved cells, but not
in WDM-evolved cells nor in cells subjected to an untreated
control evolution (Supplementary Table 4, Supplementary Fig. 5,
Supplementary Note 1), indicating that this deletion appears to
arise specifically under repeated SDM antibiotic treatment. We
pulled the ΔnhaA and ΔnhaR single-gene knockouts from the

Keio collection34 (Supplementary Table 1) and found that only
ΔnhaA was SDM-tolerant (Fig. 2b, Supplementary Fig. 2).
Further, in direct competition experiments with the ancestral
strain, ΔnhaA had higher fitness under ampicillin treatment, but
not under the untreated control (Fig. 2c). Overall, these results
indicate that deletion of nhaA in SDM-evolved strains is
responsible for the mutant phenotype.

nhaA deletion disrupts cellular homeostasis and triggers
metabolic suppression. nhaA is critical to the maintenance of a
neutral internal pH and is highly expressed in stationary phase
during growth in LB, when alkaline conditions have been reached
due to catabolism of amino acids35–38. Interestingly, ΔnhaA and
amp D8 grew to the same maximal density as the ancestral strain
in media containing glucose, where no alkalization occurs (Sup-
plementary Fig. 6a, b). This led us to assess whether tolerance was

Fig. 1 Tolerance evolves during repeated SDM but not WDM antibiotic treatment. a Schematic of evolution. An overnight culture of E. coli BW25113 was
diluted 1:100 in LB, then incubated with an SDM or WDM antibiotic at the indicated concentration for 6 hours in a deep 96-well plate in triplicate. Next,
plates were centrifuged and washed two times in PBS. Cells were then re-suspended in fresh LB, grown overnight, and the process was repeated the
following day. b Percent survival of ancestral and evolved cells against SDM and WDM antibiotics. Horizontal axis labels indicate the antibiotic on which
the culture was evolved and the evolution day (i.e., amp D6 indicates cells were evolved on ampicillin for 6 days). Data are representative of three
biological replicates; error bars show SEM. cMICs of ancestral and evolved cultures. Experiments were performed in biological triplicate; error bars indicate
SEM. d Cross-tolerance of ampicillin- and ciprofloxacin-evolved cultures. Horizontal axis labels indicate the antibiotic tested for cross-tolerance. The figure
legend indicates the antibiotic on which the culture was evolved and the evolution day. Shown is the mean of three biological replicates; error bars indicate
SEM. Source data are provided as a Source Data file.
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also dependent on overnight media alkalization or whether the
physiological changes leading to SDM antibiotic tolerance arose
during the treatment phase itself. We found that when nhaA was
deleted, cells grown overnight in LB were tolerant to ampicillin
regardless of the medium used for drug treatment (Supplemen-
tary Fig. 6c). However, when cells were grown overnight in
conditions where there is no alkalization, no tolerance was
observed even when treatment was carried out in LB (Supple-
mentary Fig. 6c). These results suggest that loss of nhaA in

alkaline conditions disrupts cellular homeostasis, causing SDM
tolerance and a reduction in maximal density35.

To better understand how deletion of nhaA leads to antibiotic
tolerance, we used RNA sequencing to compare gene expression
between ancestral cells and amp D8 cells harboring the nhaA
deletion. Amp D8 cells exhibited strong signatures of repressed
metabolism, with downregulation of pathways involved in ATP
metabolism, aerobic respiration, and the TCA cycle (Fig. 2d,
Supplementary Note 2). Consistent with the RNA sequencing
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analysis, amp D8 cells had lower intracellular ATP content than
the ancestral strain (Fig. 2e). The suppression of metabolism in
ampicillin-evolved cells may protect from metabolism-related
damage triggered by SDM antibiotics39. We also saw upregulation
of genes involved in biofilm formation and the SOS response,
both of which have been linked to antibiotic tolerance (Fig. 2d,
Supplementary Note 2). Using qRT-PCR on a subset of
transcripts, we verified that these trends related to metabolism,
the SOS response, and biofilm formation were also present in
ΔnhaA, and that the amp D8 and ΔnhaA transcriptomes appear
to be highly correlated (Supplementary Fig. 8). Together, these
data reveal that in response to nhaA deletion, ampicillin-evolved
cells downregulate metabolism and upregulate stress responses,
which likely contribute to the antibiotic-tolerant phenotype.

SDM/WDM cycling delays evolution of tolerance. Previous
work has shown that evolution of antibiotic tolerance can be
delayed by interspersing days of antibiotic treatment with days of
no treatment, and that longer intervals between treatment days
increases the delay of tolerance2. However, prolonging the time
between doses by interspersing days of treatment with no treat-
ment may not be a viable strategy to delay tolerance in the clinic,
as many clinical indications require consecutive days of antibiotic
therapy12,40,41. Thus, we wondered if this principle could be
applied to our SDM/WDM findings, where instead of alternating
antibiotic treatment with no treatment, SDM antibiotic treatment
could be alternated with WDM treatment in order to delay
evolution of SDM tolerance while permitting daily antibiotic
dosing. As WDM antibiotics eradicate cells regardless of meta-
bolic state15, this strategy might stall the selection for SDM-
tolerant mutants, with the benefits of minimizing the application
of WDM antibiotics which often cause human toxicity42–44 and
allowing for uninterrupted antibiotic treatment.

To first determine whether cycling of antibiotics with different
metabolic dependencies can delay tolerance, we followed the
same evolution protocol as with the single antibiotic (mono-
therapy) evolution, except every day treatment was alternated
between two SDM antibiotics (ampicillin and ciprofloxacin), or
between an SDM antibiotic (ampicillin) and a WDM antibiotic
(mitomycin C, gentamicin, or halicin) (Fig. 3a). We observed no
increase in survival to ampicillin treatment for the SDM/WDM
cycling evolution up to day 30 (Fig. 3b). However, daily cycling of
two SDM antibiotics (ampicillin/ciprofloxacin) quickly led to
evolution of SDM-tolerance, with an increase in survival to both
ampicillin and ciprofloxacin (Fig. 3b), but no change in MIC
(Fig. 3c). Tolerance evolved during SDM/SDM cycling through
the same mechanism as the SDM monotherapy evolutions, as we
again observed deletion of nhaA (Supplementary Fig. 5e,
Supplementary Table 4). The observation that SDM/SDM cycling
was unable to prevent evolution of tolerance demonstrates that
the delay in SDM tolerance evolution during cycling is dependent

on combining an SDM with a WDM, rather than simply the
cycling of two drugs with different mechanisms of action.

Having determined that daily SDM/WDM cycling delays
evolution of SDM tolerance, we next sought to determine whether
the frequency of SDM versus WDM application during cycling
treatments affected the amount of tolerance delay. Reducing the
frequency of WDM treatment with a concomitant increase in
SDM treatment frequency could allow for more dose-sparing of
the WDM antibiotic, though there would likely be a trade-off
between these toxicity concerns and the amount of tolerance
delay. Indeed, a stochastic evolution dynamics model predicted
that shifting the balance of SDM/WDM cycling in favor of more
frequent SDM treatments would cause tolerant mutants to more
rapidly take over the population (Fig. 3d, e, Supplementary
Note 3). However, the model also predicted that even relatively
infrequent WDM dosing (e.g., up to 4 days of SDM treatment
alternated with 1 day of WDM treatment) could provide some
delay of tolerance evolution compared with SDM monotherapy
(Fig. 3d, e). To test these predictions experimentally, we
alternated 1–4 days of ampicillin (SDM) treatment with 1 day
of mitomycin C (WDM) treatment, and then measured MICs and
survival against ampicillin at days 10, 20, and 30 (Fig. 3f, g).
Consistent with the model predictions, we found that tolerance
evolved faster as the number of consecutive days of SDM
treatment increased, though infrequent dosing with a WDM
antibiotic still resulted in a notable delay of tolerance evolution
(Fig. 3f). These results demonstrate a clear trade-off between
tolerance evolution and WDM treatment frequency.

Discussion
The relationship between antibiotic metabolism dependence and
the evolution of tolerance had not been previously explored,
despite low metabolism being a key contributor to antibiotic
tolerance16,20,24. Our finding that WDM antibiotics did not
evolve tolerance over the course of 30 days of treatment suggests
that some antibiotics may be better suited for long-term treat-
ment than others that are more vulnerable to tolerance evolution.
While most known WDM antibiotics have limited clinical use
due to toxicity42–44, continuing efforts in finding new compounds
with anti-tolerance activity45, as well as the design of combination
strategies that can dose-spare toxic antibiotics15, will be crucial
for improving treatment outcomes, particularly for patients with
chronic bacterial infections who often have high levels of
antibiotic-tolerant isolates46. Indeed, a recent study found little
antibiotic tolerance amongst isolates from patients with acute P.
aeruginosa lung infections, but high levels of tolerance in patients
with chronic infections46. Our SDM/WDM cycling work suggests
that differences in antibiotic metabolic dependencies could be
harnessed to guide the design of customized treatment strategies
based on balancing concerns of toxicity and tolerance evolution.

While tolerance was first regarded as a physiological, non-
inheritable state primarily induced by environmental cues47,

Fig. 2 A novel mechanism of tolerance through nhaA loss. a Deletion of an ~2.6–2.7 kb region from the E. coli BW25113 genome, including the sodium-
proton antiporter nhaA and its regulator nhaR, in all replicates of ampicillin-evolved cells was identified through whole-genome sequencing. One replicate
also had a 1 bp insertion near the IS1A insertion element. b Percent survival of ancestral, amp D8, ΔnhaA, and ΔnhaR under ampicillin treatment. Overnight
cultures were diluted 1:100 and treated with ampicillin for 6 hours. Shown is the mean of three biological replicates; error bars represent SEM. c Relative
ΔnhaA fitness under ampicillin treatment and an untreated control. Overnight cultures of ancestral and ΔnhaA were combined and diluted 1:100 into fresh
LB, then treated with ampicillin or a vehicle control (water) for 6 hours. The mean of three biological replicates is shown; error bars indicate SEM.
d Hierarchical clustering of differentially expressed genes (DEGs) for three biological replicates of ancestral and amp D8. Heat map color shows z-score
normalized counts per million (CPM). DEGs belonging to each GO term category are denoted on the left and in the bottom legend. GO term categories
included are cell adhesion involved in biofilm formation (GO:0043708), SOS response (GO:0009432), glycolytic process (GO:0006096), ATP metabolic
process (GO:0046034), tricarboxylic acid cycle (GO:0006099), and aerobic respiration (GO:0009060). e Intracellular ATP concentration in ancestral,
amp D8, and ΔnhaA. Data are representative of three biological replicates; error bars denote SEM. Source data are provided as a Source Data file.
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in recent years whole-genome sequencing has shed light on
the many mutations that can cause heritable tolerance. Given the
size of the E. coli “tolerome”, genes known to contribute to
tolerance3,48–50, it is not surprising that many different mechan-
isms of antibiotic tolerance evolution have been reported5. Here,
we identify a mechanism of SDM tolerance through deletion of

the sodium-proton antiporter gene nhaA. Despite the diverse pool
of target mutations for evolved tolerance between studies, tran-
scriptomics and proteomics have allowed for the characterization
of pathways that are commonly differentially expressed across
separate studies4,5,13,14,51. Consistent with many previously iden-
tified antibiotic-tolerant mutants, our transcriptomic analysis of
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SDM-tolerant mutants revealed upregulation of the SOS response
and biofilm formation along with dramatic downregulation of
metabolic processes4,14,24,51,52. Metabolic mutations have not only
been implicated in tolerance, but also in resistance, as shown by
recent studies which found mutations in central carbon metabo-
lism, energy metabolism, and biosynthetic pathway genes asso-
ciated with antibiotic resistance in in vitro evolved strains and in
clinical isolates28,53. A clearer, more comprehensive picture of
cellular pathways that can lead to tolerance and resistance is
emerging, which will be helpful in developing more robust anti-
biotic treatments.

Modulation of both intracellular and extracellular pH has been
known to alter antibiotic susceptibility51,54,55. For example,
mutations in respiratory complex I were found during an in vitro
evolution of E. coli, which resulted in cytoplasmic acidification
leading to increased antibiotic persistence51. Antibiotic treatment
itself is also thought to trigger changes in intracellular pH, which
activates cell stress and contributes to antibiotic-induced cell
death, though whether this is achieved through alkalization or
acidification may be dependent on the species and antibiotics in
question54,56,57. Here, we demonstrate an additional link between
pH and antibiotic efficacy whereby nhaA deletion results in tol-
erance, specifically under alkaline conditions. However, it remains
unclear how nhaA deletion triggers metabolic repression and
antibiotic tolerance, and the range of biological contexts under
which this result would be observed. Considering the role of nhaA
in maintaining a neutral intracellular pH under alkaline
conditions35, and our observation that antibiotic tolerance
mediated by nhaA loss was dependent on alkalinity (Supple-
mentary Fig. 6), nhaA deletion may not trigger this metabolic
reprogramming and antibiotic tolerance if treatment were con-
ducted under consistent neutral or acidic pH conditions58.
Nonetheless, we expect the observations of differing tolerance
evolution rates between SDM and WDM antibiotics to hold for
any metabolism-altering mutations that lead to tolerance. While
tolerance has in most cases been linked to a low metabolic state,
there may be tolerance-conferring mutations that do not impact
metabolic state, such as increased antibiotic efflux, in which case
the evolutionary outcome may not be impacted by antibiotic
metabolism dependence59,60. More work is required to under-
stand the relationships between nhaA activity, metabolism, and
antibiotic efficacy.

As we strive to preserve long-term antibiotic efficacy, we must
consider not only resistance but tolerance as well. The evolution
of tolerance has been shown to facilitate the evolution of
resistance3,5,11,46,61–65, and thus anti-tolerance strategies should
also be effective in delaying antibiotic resistance, though the

interplay of tolerance and resistance evolution under combination
treatments is further complicated when considering drug pairs
that interact through, for example, suppression11. Cycling stra-
tegies, where antibiotics are alternated periodically, are able to
slow the evolution of resistance when employing pairs of anti-
biotics that are collaterally sensitive, which then constrains the
available mutational pathways to resistance against both
antibiotics66. Here, we found that cycling strategies are also
effective in delaying tolerance, but only when SDM antibiotics are
cycled with WDM antibiotics, which slow the selection for SDM-
tolerant mutants. Our findings emphasize the need to account for
bacterial metabolism in determining antibiotic efficacy as well as
the evolutionary landscape of tolerance in response to repeated
antibiotic challenge.

Methods
Evolution protocol. An overnight culture of E. coli BW25113 (Supplementary
Table 1) was diluted 1:100 in LB broth and added to a deep 96-well plate with
antibiotic for a total volume of 400 µL. Concentrations of antibiotics used were as
follows: 50 µg/mL ampicillin (amp), 0.3 µg/mL ciprofloxacin (cip), 12 µg/mL
mitomycin C (mmc), 96 µg/mL gentamicin (gent), and 120 µg/mL halicin (hal).
Plates were sealed with BioExcell Films and incubated at 37 °C with 900 rpm
shaking for 6 hours, then centrifuged at 3000 × g, 4 °C for 7 min. Cells were washed
twice with PBS, then re-suspended in 400 µL of fresh LB broth for 18 h of growth at
37 °C with shaking. The following morning, the OD600 of the overnight cultures
was measured in a Spectramax M3 Plate Reader (Molecular Devices), then over-
night cultures were diluted 1:100 and antibiotic was added to initiate the next
evolution round. This process was repeated every day throughout the course of the
evolutions. Overnight cultures from each day were saved as 25% glycerol stocks
and stored at −80 °C. Each evolution condition was conducted in biological
triplicate.

For monotherapy evolutions, the same antibiotic was applied daily. The
untreated control evolution was conducted identically to antibiotic-treated
evolutions, except a vehicle control (water) was added during the treatment phase.
For SDM/SDM cycling evolutions, ampicillin, and ciprofloxacin treatment was
alternated every day. For SDM/WDM cycling evolutions, 1–4 days of ampicillin
treatment was alternated with 1 day of WDM treatment.

For population bottleneck analysis, cultures were evolved on ampicillin as
described above, except only 10% of cells surviving antibiotic treatment were
carried over into the overnight growth phase.

Antibiotic survival assays. Overnight cultures grown from frozen stocks were
diluted 1:100 in fresh LB in a deep 96-well plate. Antibiotic was added at the
following concentrations: 50 µg/mL amp, 0.3 µg/mL cip, 12 µg/mL mmc, 96 µg/mL
gent, and 120 µg/mL hal. Plates were incubated at 37 °C with 900 rpm shaking for
6 hours, then centrifuged at 3000 × g, 4 °C for 7 min, and washed twice with PBS.
Cells were then re-suspended in PBS and serially diluted 10-fold. 7 µL was spotted
on LB agar plates, which were then incubated overnight at 37 °C for colony enu-
meration the following day. All survival assays were performed on the population
level from frozen stocks saved from overnight cultures of each evolution day,
except for the clonal analysis in Supplementary Fig. 4f, where frozen stocks of
overnights saved from the indicated evolution day were streaked on LB agar plates,

Fig. 3 SDM/WDM cycling delays evolution of SDM tolerance. a Schematic of antibiotic cycling evolutions. Evolutions were conducted identically to Fig. 1,
except the applied antibiotic was cycled as indicated. b Percent survival from evolutions where two antibiotics were alternated every day. Horizontal axis
labels indicate the antibiotic(s) on which the culture was evolved and the evolution day. Survival assays were conducted with ampicillin and ciprofloxacin;
survival data are grouped by the antibiotic used for phenotyping. Data are representative of three biological replicates; error bars indicate SEM. c MICs of
evolutions where two antibiotics were alternated every day. Three biological replicates were assayed; error bars indicate SEM. d Predicted number of
tolerant mutant cells after the growth phase of each evolution day for various ampicillin/mitomycin C cycling regimens. One thousand simulations of the
model were run and the output from a simulation with the median takeover day is shown. The mutation rate parameter used for these simulations was
50 × 10−10 mutations per division3. e Violin plot representation of the mutant takeover day over 1000 model simulations. Mutant takeover day is defined
as when the number of tolerant mutant cells exceeds the number of wild-type cells. Simulation values of 120 and greater are binned together. Solid white
lines indicate the median simulation value and dotted lines represent the 25th and 75th percentiles. The width of each shaded area is indicative of the
frequency of that value amongst the 1000 simulations, and the length of the shaded area extends from the minimum to maximum simulation value. The
mutation rate parameter used for these simulations was 50 × 10−10 mutations per division3. f Experimental percent survival for evolutions conducted with
all ampicillin, all mitomycin C, or cycling of 1–4 days of ampicillin treatment with 1 day of mitomycin C treatment. Survival assays with 50 µg/mL ampicillin
were done on days 10, 20, and 30. Data are representative of three biological replicates; error bars denote SEM. g Ampicillin MIC for cycling regimens
conducted with all ampicillin, all mitomycin C, or cycling of 1–4 days of ampicillin treatment with 1 day of mitomycin C treatment. MICs were taken from
days 10, 20, and 30 of each evolution. Data are representative of three biological replicates; error bars represent SEM. Source data are provided as a Source
Data file.
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then single colonies were inoculated into LB media and grown overnight for
survival and optical density analyses.

For media comparison assays (Supplementary Fig. 6), cells were grown
overnight in LB, MOPS minimal media (Teknova M2106) with 0.2% glucose, or LB
supplemented with 0.2% glucose. These overnight cultures were then washed and
diluted 1:100 in fresh media as indicated for antibiotic survival assays.

Determination of MIC. Overnight cultures were diluted 1 in 10,000 in fresh LB
(except for Supplementary Fig. 2c, where overnight cultures were diluted 1 in 100)
and distributed into 96-well round-bottom clear polypropylene plates (Corning)
with two-fold dilutions of antibiotic for a total volume of 100 µL. Plates were sealed
with AeraSeal membranes (Sigma-Aldrich) and incubated for 24 hours at 37 °C,
900 rpm shaking, then read at OD600 in a Spectramax M3 plate reader.

Population analysis profiling. Population analysis profiling was used to determine
presence or absence of heteroresistance as described by Andersson et al.30. Over-
night cultures were serially diluted 10-fold and spread on LB agar plates containing
ampicillin at the indicated concentrations. Plates were incubated at 37 °C and
colonies were counted the following day. Heteroresistance was determined as the
presence of a subpopulation at a frequency of 10−7 or greater with a fold increase
in resistance of at least 8-fold or more as compared to the main population.

Growth rate determination. Overnight cultures were diluted 1:100 in fresh LB and
100 µL was added to 96-well round-bottom clear polypropylene plates (Corning).
To prevent evaporation, 35 µL of mineral oil was added to the liquid surface.
Growth curves were read in a Spectramax M3 plate reader, at 37 °C with shaking at
an optical density of 600 nm; reads were taken every 5 min. To determine growth
rate, the log phase of growth curves was fit to an exponential growth equation using
Graphpad Prism 8.

Colony appearance time determination. Overnight cultures were diluted by a
factor of 105–106, and 75 µL was spread on a round LB agar plate to achieve
100–300 cells per plate. Plates were placed agar side down on an Epson translucent-
imaging scanner at 37 °C and scans were taken every 5 min. ColTapp67 was used to
determine colony appearance time.

Whole-genome sequencing. The ancestral E. coli BW25113 and two replicate
wells of amp D8 were sent for bacterial whole-genome sequencing. Briefly, over-
night cultures were grown from frozen stocks in LB broth and 1 mL was pelleted.
Cell pellets were immediately frozen at −80 °C and sent to Quintara Biosciences
(Cambridge, MA) for DNA extraction and sequencing. DNA was extracted using
the Universal Genomic DNA Kit (CW Biosciences), then sequenced on a NovaSeq
S4 flow cell, with 2 × 150 paired-end reads at 100X coverage. BWA (v0.7.17)68 was
used to align sequencing reads to the E. coli BW25113 reference genome (NCBI
CP009273.1), then Pilon (v1.23)69 with default settings was used to identify var-
iants. We verified that short variants had mapping quality >10 and filtered large
indels and duplications designated as “imprecise” by Pilon (containing N’s in the
local reassembly), leaving just three variants (Supplementary Table 3).

Verification of deletion. Frozen stocks were streaked on LB agar and single
colonies were picked into 250 µL sterile water and vortexed. Colony PCR reactions
were set up using Q5 High-Fidelity 2X Master Mix (New England Biosciences)
containing 1 µL of re-suspended cells. For primer set 1, an annealing temperature
of 61 °C and 2.5-min extension time was used. For primer set 2, the annealing
temperature was 61 °C with a 4-min extension time. Primer set 2 probes a larger
flanking region of nhaA/nhaR and was used to identify the deletion in
ciprofloxacin-evolved and ampicillin/ciprofloxacin-evolved cells (Supplementary
Data 1). All reactions included an initial 5-min step at 98 °C for cell lysis. PCR
reactions were run on an agarose gel with a 1 kb ladder (New England Biosciences)
and imaged with an Azure Biosystems c400 Imaging System. PCR products with a
deletion were cleaned using the Qiagen PCR Clean-Up Kit, then sent to Quintara
Biosciences (Cambridge, MA) for Sanger sequencing. Geneious (Biomatters) was
used to map Sanger sequencing results onto the ancestral genome (NCBI
CP009273.1).

pH measurements. Extracellular pH was measured using a Mettler Toledo
FiveEasy pH meter. The pH meter was calibrated according to the manufacturer’s
instructions, then used to measure the pH of the media at inoculation and after
overnight growth.

Determination of relative fitness. Stationary phase ancestral and ΔnhaA were
mixed 1:1, then diluted 1:100 into fresh LB in a deep 96-well plate. 50 μg/mL amp
or a vehicle control (water) was added and plates were incubated for 6 hours at
37 °C with 900 rpm shaking. Plates were then spun down at 4 °C, 3000 × g for
7 min, washed twice with PBS, then re-suspended in an equal volume of PBS. Cells
were serially diluted 10-fold in PBS, then 7 µL was spotted on both LB agar and LB
agar containing 50 µg/mL kanamycin. Agar plates were incubated at 37 °C

overnight then counted for colony enumeration. The number of ΔnhaA cells was
taken as the colony counts on LB agar containing kanamycin, and the total number
of cells (ΔnhaA and ancestral) was taken as the colony counts on LB agar con-
taining no antibiotic.

Relative fitness was calculated according to Van den Bergh et al.2. Proportion
composition of ΔnhaA was determined by dividing the ΔnhaA CFU/mL by the
total CFU/mL prior to antibiotic treatment and after treatment. Fitness (F) of
ΔnhaA relative to the ancestral strain was then calculated as

F ¼ p Tð Þ � ½p Tð Þ � p 0ð Þ�
p 0ð Þ � ½p Tð Þ � p 0ð Þ� ð1Þ

where p(T) is the proportion composition of ΔnhaA after the 6 hour treatment
period and p(0) is the proportion composition of ΔnhaA immediately prior to
treatment2.

RNA sequencing and analysis. Overnight cultures grown in LB of the ancestral
strain and amp D8 cultures were prepared in biological triplicate, then pelleted.
Cell pellets were frozen at −80 °C and sent to Quintara Biosciences (Cambridge,
MA) for RNA extraction and sequencing. RNA was extracted using the RNeasy
Mini Kit (Qiagen), then sequenced on a NovaSeq S4 flow cell, with 2 × 150 paired-
end reads at 100X coverage.

Quality of sequencing reads from each sample was assessed using FastQC
(11.9)70. Reads were aligned to the E. coli BW25113 complete genome, CP009273.1,
using Bowtie2 (2.3.4.3)71, and read counts were assigned to genes using HTSeq
(2.0.1)72. Read counts were used as input to EdgeR (Version 3.32.1) to determine
differentially expressed genes between the evolved group and the untreated control
using default settings73,74. Because EdgeR suggests filtering of genes with very low
counts across all libraries, we used an expression cutoff of at least 5 CPMs (Counts
Per Million), calculated using EdgeR, in at least two biological replicates, consistent
with EdgeR recommendations. Genes were determined to be differentially
expressed using standard EdgeR settings, p < 0.05 and false-discovery rate (FDR) of
< 0.05. CPMs were used for the unsupervised clustering and heatmap generation.
GO term enrichment on Biological Process GO terms was performed using Fisher’s
exact test implemented in OmicsBox (2.0.36)75.

Gene Set Enrichment Analysis (GSEA) was performed using OmicsBox with
default settings (1000 permutations and a classic enrichment statistic, min gene
set= 15, max gene set= 500) and an FDR of < 0.05. A ranked list of expressed genes
was generated using log Fold Change. GSEA was used to determine which gene sets
were enriched at either the top or the bottom extreme of the ranked list of genes.

qRT-PCR. RNA extraction was performed as described in Culviner et al.76. Briefly,
1 mL TRI Reagent RT (Molecular Research Center) was added to cell pellets from
1mL of overnight cultures and incubated in a 70 °C bead bath for 10 min. Tubes
were frozen at −80 °C for 15 min, then thawed at room temperature and spun in a
temperature-controlled microfuge at 4 °C, 13,000 × g for 5 min. The supernatant
was then transferred to a separate tube and RNA isolation was performed
according to the TRI Reagent RT method (Molecular Research Center).
50 μL bromoanisole was added to the supernatant, samples were vortexed and
incubated on ice for 5 min, then spun at 13,000 × g for 15 min at 4 °C. 400 μL of the
top aqueous phase layer was transferred to a new tube and an equal volume of
isopropanol was added. The mixture was then loaded on a silica column and
washed once with Buffer RW1 (Qiagen) and twice with Buffer RPE (Qiagen). RNA
was then eluted from the column using water, and a DNase treatment was per-
formed for 40 min at 37 °C. Finally, RNA was re-loaded on a silica column, column
washes were conducted as before, and RNA was eluted.

qRT-PCR reactions were performed using the Luna Universal One-Step RT-qPCR
kit (New England Biolabs) and a LightCycler 96 (Roche). Reactions were run in
technical triplicate and biological duplicate in white LightCycler 480 96-well plates
(Roche). qRT-PCR primers are described in Supplementary Data 1. Threshold cycle
(Ct) values were determined using the LightCycler Software (Roche).

The ΔΔCt method77 was used to determine relative gene expression, where first
the ΔCt for each strain and each experimental gene was calculated as

ΔCt ¼ Ctðexperimental geneÞ � Ctðhousekeeping geneÞ ð2Þ
Next, the ΔΔCt for each experimental gene in either amp D8 or ΔnhaA was

calculated as

ΔΔCt ¼ ΔCtðampD8 or ΔnhaAÞ � ΔCtðancestralÞ ð3Þ
The negative ΔΔCt was taken as the relative gene expression (Supplementary

Fig. 8), such that a positive value indicates upregulation and a negative value
indicates downregulation. Five different housekeeping genes were selected from
non-differentially expressed genes as determined in the RNA sequencing analysis
between amp D8 and ancestral, and each housekeeping gene was used to generate a
separate ΔΔCt value for each experimental gene in order to control for any
differences in these non-differentially expressed genes.

Measurement of intracellular ATP. Intracellular ATP was measured using the
BacTiter-Glo Microbial Cell Viability Assay (Promega G8230), according to the
manufacturer’s instructions. Briefly, overnight cultures were diluted 1:100 and
OD600 was measured. Diluted cells were then mixed 1:1 with the BacTiter-Glo

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30272-0

8 NATURE COMMUNICATIONS |         (2022) 13:2525 | https://doi.org/10.1038/s41467-022-30272-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


reagent in a white 96-well polystyrene plate in technical triplicate and luminescence
was measured using a Spectramax M3 plate reader. Ten-fold dilutions of ATP were
used to create a standard curve.

Determination of metabolism dependence. Metabolism dependence values
(Supplementary Fig. 1c) were determined as described previously15. Briefly, an over-
night culture of E. coli BW25113 was grown in LB, then diluted 1 in 10,000 and sub-
cultured for 4 hours. Cells were centrifuged at 4000 × g, 4 °C for 15min, washed three
times with PBS, then re-suspended in 0, 0.1, 1, 10, or 100% LB in PBS. After 2 hours
incubation at 37 °C, cells were back-diluted in the same nutrient conditions to an
OD600 of 0.01 (~106 CFU/mL) and subjected to halicin treatment for 3 hours. Cells
were then washed twice with PBS and serially diluted for cell counting on LB agar
plates. Survival under varying nutrient conditions was plotted against intracellular ATP
(as determined in Zheng et al.15) for halicin concentrations of 2X MIC and above;
linear regression was then performed and the metabolism dependence value was taken
as the negative slope15. Linear regression was performed using Graphpad Prism 8, and
a summary of the linear regression statistics is provided in Supplementary Table 2.

Stochastic evolution dynamics model. We built a simple Monte Carlo stochastic
evolution dynamics model in order to simulate the impact of different cycling
regimens on tolerance evolution. The model is composed of three distinct phases:
an initialization phase followed by alternating growth and treatment phases. The
model was built using Matlab (version R2021a).

Initialization phase. Values from the experimental set-up, experimental data, and
the literature are used to parameterize the model (Supplementary Table 5). A
distinct set of stationary-phase density and survival percent values are randomly
generated for each simulation from a uniform distribution bounded by experi-
mentally observed values (Supplementary Table 5). Stationary phase densities are
converted to stationary-phase cell numbers such that the model runs on integer
values of numbers of wild-type and mutant bacteria.

Growth phase. The growth phase takes in numbers of wild-type and mutant cells,
wild-type and mutant stationary-phase cell numbers, and the mutation rate. It
returns the number of wild-type and mutant cells at the end of the growth phase of
the cycle. Wild-type and mutant cells are doubled until reaching the final
stationary-phase cell number. At each doubling, wild-type cells are given an
opportunity to mutate to a tolerant mutant by sampling a random number from a
Poisson distribution with a mean computed by multiplying the number of wild-
type cells by the mutation rate. This phase makes a few simplifying assumptions.
First, it assumes that all growth properties are the same between wild-type and
mutant bacteria besides final stationary phase cell number. Second, the final
stationary-phase cell number at the end of the growth phase, relative to the input
wild-type and mutant stationary-phase cell numbers, is assumed to be linearly
proportional to the number of input wild-type and mutant cells. Third, it assumes
that mutants do not revert.

Treatment phase. The treatment phase takes in numbers of wild-type and mutant
cells, wild-type and mutant survival percentages for the relevant SDM or WDM
drug treatment, and the fold dilution before treatment; it returns the number of
surviving wild-type and mutant cells. First, wild-type and mutant cells are diluted
by sampling random numbers from a Poisson distribution with a mean computed
by dividing the number of wild-type and mutant cells by the fold dilution. The
surviving number of wild-type and mutant cells is then calculated by sampling
random numbers from a Poisson distribution with a mean computed by multi-
plying the relevant survival fraction by the number of wild-type or mutant cells.

Analysis. Mutant takeover day is defined as the day when the mutant cell number is
greater than the wild-type cell number after the growth phase. The probability of
mutant takeover by a specified day was determined by computing the empirical
cumulative density function for the distribution of mutant takeover days. Prob-
abilities for days not represented in the empirical cumulative density function were
estimated using linear interpolation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in the Sequence Read
Archive repository under accession code PRJNA810430. The reference E. coli BW25113
genome used in this study is available in the NCBI database under accession code
CP009273.1. Source data are provided with this paper.

Code availability
Code for the SDM/WDM cycling prediction model is available as Supplementary
Software.
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